Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565291

RESUMO

Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation, and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct 'metabolic' cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.Significance Statement Although reduced glucose uptake in the brain has been recognized as one of the earliest pathological events that accompany Alzheimer's disease (AD), it has not been clear whether this was due to a brain-wide defect in glucose metabolism or a dysfunction in a particular cell type. Our data suggest that dysregulation of metabolic homeostasis in microglia is critical for global AD pathology in a mouse model. Upon restoring glucose metabolism in microglia genetically, AD pathology is attenuated with a concomitant increase in DAM genes, especially DAM1 genes. These results suggest that this increase in DAM gene expression is protective against AD pathology, and glucose dyshomeostasis is a trigger to inhibit expression of protective DAM genes in AD.

2.
Neuropsychopharmacology ; 49(3): 551-560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37660129

RESUMO

Dopaminergic signaling in the nucleus accumbens shell (NAc) regulates neuronal activity relevant to reward-related learning, including cocaine-associated behaviors. Although astrocytes respond to dopamine and cocaine with structural changes, the impact of dopamine and cocaine on astrocyte functional plasticity has not been widely studied. Specifically, behavioral implications of voltage-gated channel activity in the canonically non-excitable astrocytes are not known. We characterized potassium channel function in NAc astrocytes following exposure to exogenous dopamine or cocaine self-administration training under short (2 h/day) and extended (6 h/day) access schedules. Electrophysiological, Ca2+ imaging, mRNA, and mass spectrometry tools were used for molecular characterization. Behavioral effects were examined after NAc-targeted microinjections of channel antagonists and astroglial toxins. Exogenous dopamine increased activity of currents mediated by voltage-gated (Kv7) channels in NAc astrocytes. This was associated with a ~5-fold increase in expression of Kcnq2 transcript level in homogenized NAc micropunches. Matrix-assisted laser desorption/ionization mass spectrometry revealed increased NAc dopamine levels in extended access, relative to short access, rats. Kv7 inhibition selectively increased frequency and amplitude of astrocyte intracellular Ca2+ transients in NAc of extended access rats. Inhibition of Kv7 channels in the NAc attenuated cocaine-seeking in extended access rats only, an effect that was occluded by microinjection of the astrocyte metabolic poison, fluorocitrate. These results suggest that voltage-gated K+ channel signaling in NAc astrocytes is behaviorally relevant, support Kv7-mediated regulation of astrocyte Ca2+ signals, and propose novel mechanisms of neuroglial interactions relevant to drug use.


Assuntos
Cocaína , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Ratos , Animais , Astrócitos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia , Ratos Sprague-Dawley , Dopamina/farmacologia , Núcleo Accumbens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...